

D Series	Power	MOSFET
-----------------	-------	--------

PRODUCT SUMMARY					
V _{DS} (V) at T _J max.	450				
R _{DS(on)} max. at 25 °C (Ω)	V _{GS} = 10 V 0.6				
Q _g max. (nC)	30				
Q _{gs} (nC)	4				
Q _{gd} (nC)	7				
Configuration	Single				

TO-220AB

N-Channel MOSFET

D

FEATURES

- Optimal Design
 - Low Area Specific On-Resistance
 - Low Input Capacitance (C_{iss})
 - Reduced Capacitive Switching Losses
 - High Body Diode Ruggedness
 - Avalanche Energy Rated (UIS)
- Optimal Efficiency and Operation
 - Low Cost
 - Simple Gate Drive Circuitry
 - Low Figure-of-Merit (FOM): Ron x Qg
 - Fast Switching
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

Lead (Pb)-containing terminations are not RoHS-compliant. Exemptions may apply.

APPLICATIONS

- Consumer Electronics
 - Displays (LCD or Plasma TV)
- Server and Telecom Power Supplies
- SMPS Industrial
 - Welding

 - Induction Heating
 - Motor Drives
- Battery Chargers

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	IRF740BPbF

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unless otherwis	se noted)			
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V _{DS}	400		
Gate-Source Voltage			± 30	V	
Gate-Source Voltage AC (f > 1 Hz)	V _{GS}	30			
Continuous Preis Current (T 150 °C)	V_{GS} at 10 V $T_C = 25 °C$		10	А	
Continuous Drain Current ($T_J = 150 \ ^{\circ}C$)	V_{GS} at 10 V $T_C = 100 \text{ °C}$	ID	6		
Pulsed Drain Current ^a	I _{DM}	23			
Linear Derating Factor		1.2	W/°C		
Single Pulse Avalanche Energy ^b		E _{AS}	194	mJ	
Maximum Power Dissipation	PD	147	W		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 150	°C	
Drain-Source Voltage Slope	T _J = 125 °C		24	V/ns	
Reverse Diode dV/dt ^d		dV/dt	0.6	v/IIS	
Soldering Recommendations (Peak Temperature)	for 10 s		300 ^c	°C	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature.

b. V_{DD} = 50 V, starting T_J = 25 °C, L = 2.3 mH, R_g = 25 Ω , I_{AS} = 13 A.

c. 1.6 mm from case.

d. $I_{SD} \leq I_D,$ starting T_J = 25 °C.

S12-1375-Rev. A, 18-Jun-12

1

Document Number: 91519

Static Vois	THERMAL RESISTANCE RATI	NGS							
Maximum Junction-to-Case (Drain) Rinx - 0.85 "CW SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS Min. TYP. MAX. UN Static Drain-Source Breakdown Voltage V_{OS} $V_{OS} = 0$ V, $I_D = 250 \mu$ A 400 - - V Gate-Source Threshold Voltage (N) $V_{OS} = 0$ V, $I_D = 250 \mu$ A 3 - 5 V Gate-Source Threshold Voltage (N) $V_{OS} = 0$ V, $V_{OS} = 0$ V - + 100 n/ Zero Gate Voltage Drain Current I_{OS} $V_{OS} = 300$ V, $V_{OS} = 0$ V - - 10 µ/ Drain-Source On-State Resistance $P_{OS}(m)$ $V_{OS} = 300$ V, $V_{OS} = 0$ V, $V_{OS} = 10 \times V_{OS} = 10 \times V_{OS} = 100$ V, $I_D = 5$ A - 0.5 0.6 0. Duput Capacitance C_{OSS} $V_{OS} = 0$ V, $V_{OS} = 0$ V to 320 V - 66	PARAMETER	SYMBOL	TYP.		MAX.		UNIT		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Ambient	R _{thJA}	- 62		20.04				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Case (Drain)	R _{thJC}	- 0.85			- °C/W			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Static VGS = 0 V, ID = 250 µA 400 - - V Drain-Source Breakdown Voltage V_{DS} Reference to 25 °C, ID = 250 µA - 0.53 - V/V Gate-Source Ineshold Voltage (N) VGS(h) VDS = VGS, ID = 250 µA 3 - 5 V Gate-Source Leakage IGSS VGS = 30 V - - ±100 fn/ Zero Gate Voltage Drain Current IDSS VGS = 400 V, VGS = 0 V - - 10 µ/ Drain-Source On-State Resistance Ros(n) VGS = 50 V, ID = 5 A - 0.5 0.6 0.6 Forward Transconductance Gas VDS = 50 V, ID = 5 A - 2.7 - S Output Capacitance Case VDS = 0 V, VDS = 0 V, ID = 5 A - 2.7 - S Input Capacitance Cases VGS = 0 V, VDS = 0 V, ID = 5 A - 2.7 - S Input Capacitance Cases VGS = 0 V, VDS = 0 V, ID = 0 A, VGS = 10 V - 15			1				I		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER	SYMBOL	TES	T CONDIT	IONS	MIN.	TYP.	MAX.	UNIT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static								
Gate-Source Threshold Voltage (N) V _{GS(th)} V _{DS} = V _{GS} , I _D = 250 µÅ 3 - 5 V Gate-Source Leakage I _{GSS} V _{GS} = ± 30 V - - ± 100 n/ Zero Gate Voltage Drain Current I _{DSS} V _{DS} = 400 V, V _{GS} = 0 V - - 1 µ/ Drain-Source On-State Resistance R _{DS(on)} V _{DS} = 320 V, V _{GS} = 0 V, T _J = 125 °C - 10 µ/ Input Capacitance G _{16s} V _{DS} = 50 V, I _D = 5 Å - 2.7 - S Output Capacitance C _{clis} V _{DS} = 100 V, I _D = 5 Å - 2.7 - S Reverse Transfer Capacitance C _{clis} V _{DS} = 100 V, - 59 - - 9 - - 15 30 - 166 - 9 - 15 30 - 15 30 - 15 30 - 16 36 - 15 30 - 16 16 - 16 -	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	= 0 V, I _D =	250 µA	400		-	V
	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_J$	Reference	to 25 °C,	l _D = 250 μA	-	0.53	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage (N)	V _{GS(th)}	V _{DS} =	= V_{GS} , I_D =	250 µA	3	-	5	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 30$	V	-	-	± 100	nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zava Cata Valtaga Drain Current		$V_{DS} = 400 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$		-	-	1	_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gale voltage Drain Current	IDSS	V _{DS} = 320 V	/, V _{GS} = 0 ^v	√, T _J = 125 °C	-	-	10	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 10 V$		I _D = 5 A	-	0.5	0.6	Ω
DynamicInput Capacitance C_{18s} $V_{GS} = 0 V$, $V_{DS} = 100 V$, $f = 1 MHz$ $ 526$ $-$ Output Capacitance C_{08s} $V_{OS} = 100 V$, $f = 1 MHz$ $ 59$ $-$ Effective output capacitance, energy related ⁰ $C_{0(tr)}$ $V_{GS} = 0 V$, $V_{DS} = 0 V to 320 V$ $ 666$ $-$ Effective output capacitance, time related ⁰ $C_{0(tr)}$ $V_{GS} = 0 V$, $V_{DS} = 0 V to 320 V$ $ 666$ $-$ Total Gate Charge Q_g Q_{gs} $V_{GS} = 10 V$ $I_D = 5 A, V_{DS} = 320 V$ $ 4$ $-$ Gate-Drain Charge Q_{gd} Q_{gd} $V_{GS} = 10 V$ $I_D = 5 A, V_{DS} = 320 V$ $ 115$ 30 Turn-On Delay Time $t_{d(cn)}$ t_r $V_{OD} = 400 V, I_D = 10 A,$ $V_{GS} = 10 V, R_g = 9.1 \Omega$ $ 118$ 36 Fail Time t_r $V_{DD} = 400 V, I_D = 10 A,$ $V_{GS} = 10 V, R_g = 9.1 \Omega$ $ 114$ 28 Gate Input Resistance R_g $f = 1 MHz$, open drain $ 1.8$ 36 Pulsed Diode Characteristics $ 10 M_{CSFET} symbol$ showing the integral reverse $p - n junction diode$ $ 10 M_{CS}$ Dide Forward Voltage V_{SD} $T_J = 25 °C, I_S = 5 A, V_{GS} = 0 V$ $ 1.2 V$ Reverse Recovery Time t_{rr} T_{rr} $ 230 - ms$ Reverse Recovery Charge Q_{rr} $T_J = 25 °C, I_S = 5 A, V_{GS} = 0 V$ $ I_{rr$	Forward Transconductance	9 _{fs}	V _{DS}	s = 50 V, I _D	= 5 A	-	2.7	-	S
Output CapacitanceCoss $V_{OS} = 100 \text{ V},$ f = 1 MHz $ 59$ $-$ Reverse Transfer Capacitance C_{rss} $V_{OS} = 100 \text{ V},$ f = 1 MHz $ 59$ $-$ Effective output capacitance, energy related ⁰ $C_{o(er)}$ $V_{OS} = 0 \text{ V},$ $V_{DS} = 0 \text{ V} to 320 \text{ V}$ $ 666$ $-$ Effective output capacitance, time related ⁰ $C_{o(tr)}$ $V_{OS} = 0 \text{ V},$ $V_{DS} = 0 \text{ V} to 320 \text{ V}$ $ 666$ $-$ Total Gate Charge Q_g Q_g $V_{GS} = 10 \text{ V}$ $I_D = 5 \text{ A}, V_{DS} = 320 \text{ V}$ $ 44$ $-$ Gate-Drain Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 5 \text{ A}, V_{DS} = 320 \text{ V}$ $ 44$ $ nd$ Gate-Drain Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 5 \text{ A}, V_{DS} = 320 \text{ V}$ $ 18$ 36 $-$ Turn-On Delay Time $t_d(on)$ $V_{GS} = 10 \text{ V}, \text{ Rg} = 9.1 \Omega$ $ 18$ 36 $ 144$ 28 Gate Input Resistance R_g $f = 1 \text{ MHz}, open drain 1.8 \OmegaDrain-Source Body Diode CharacteristicsMOSFET symbolshowing theintegral reversep - n junction diode 10-Pulsed Diode Forward CurrentI_{SM}MOSFET symbolshowing theintegral reversep - n junction diode 10-Dide Forward VoltageV_{SD}T_J = 25 ^{\circ} C, I_F = I_S = 5 A,dI/dt = 100 A/\mu S, V_R = 25 \text{ V} -$	Dynamic					•	•		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}		$V_{ee} = 0$	1	-	526	-	
Reverse Transfer Capacitance C_{rss} $f = 1 \text{ MHz}$ $ 9$ $-$ Effective output capacitance, energy related ⁰ $C_{o(er)}$ $V_{GS} = 0 \text{ V},$ $V_{DS} = 0 \text{ V to } 320 \text{ V}$ $ 666$ $-$ Effective output capacitance, time related ⁰ $C_{o(tr)}$ $V_{GS} = 0 \text{ V},$ $V_{DS} = 0 \text{ V to } 320 \text{ V}$ $ 666$ $-$ Total Gate Charge Q_g $Gate-Source ChargeQ_{gg}Q_{gd}V_{GS} = 10 \text{ V}I_D = 5 \text{ A}, V_{DS} = 320 \text{ V} 44-Gate-Drain ChargeQ_{gd}V_{GS} = 10 \text{ V}I_D = 5 \text{ A}, V_{DS} = 320 \text{ V} 44 ndTurn-On Delay Timet_{d(on)}T_rV_{GS} = 10 \text{ V}, I_D = 10 \text{ A},V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega 1836-Turn-Off Delay Timet_{d(off)}r_fr_f 1428-Gate Input ResistanceR_gf = 1 \text{ MHz}, open drain 1.8 \OmegaPulsed Diode Forward CurrentI_SMOSFET symbolshowing theintegral reversep - n junction diode 10-Dide Forward VoltageV_{SD}T_J = 25 ^{\circ}C, I_S = 5 A, V_{GS} = 0 \text{ V} 1.2VReverse Recovery ChargeQ_{rr}T_J = 25 ^{\circ}C, I_F = I_S = 5A,dI/ct = 100 A/µS, V_R = 25 \text{ V} 1.6 1.6$	Output Capacitance		$V_{DS} = 100 V,$		-	59	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance				-	9	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Effective output capacitance, energy	C _{o(er)}			-	66	-	pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C _{o(tr)}			-	84	-	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge	Qq				-	15	30	
Gate-Drain Charge Q_{gd} -7-Turn-On Delay Time $t_{d(on)}$ Rise Time t_r Turn-Off Delay Time t_r Turn-Off Delay Time $t_{d(off)}$ Fall Time t_f Gate Input Resistance R_g Gate Input Resistance R_g Tarin-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S Pulsed Diode Forward Current I_S Diode Forward Voltage V_{SD} Turn-Off Delay Time t_r I_S $T_J = 25 ^\circ C$, $I_F = I_S = 5 A$, $dI/dt = 100 A/\mus, V_R = 25 V$ I_S $I_S = 0$ I_S $I_S = 5 A, V_{GS} = 0 V$ I_S $I_S = 25 ^\circ C, I_F = I_S = 5 A,$ I_S $I_S = 0$ I_S $I_S = 0$ I_S $I_S = 0$ I_S $I_S = 0$ I_S $I_S = 0 V_S I_S = 5 A, V_G = 0 V$ I_S $I_S = 0 C, I_F = I_S = 5 A, V_G = 0 V$ I_S $I_S = 0 C, I_F = 1 S = 5 A, V_S = 25 V$ I_S $I_S = 0 C, I_F = 0 S = 5 A, V_S = 25 V$ I_S $I_S = 0 C, I_S = 5 A, V_S = 25 V$ I_S $I_S = 0 C, I_S = 5 A, V_S = 25 V$ I_S $I_S = 0 C, I_S = 5 A, V_S = 25 V$ I_S $I_S = 0 C, I_S = 5 A, V_S = 25 V$ I_S $I_S = 0 C, I_S = 5 A, V_S = 25 V$ I_S $I_S = 0 C,$	Gate-Source Charge		$V_{GS} = 10 V$ $I_D = 5 A, V_{DS} = 320 V$		-	4	-	nC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge	•				-	7	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time				-	12	24		
Turn-Off Delay Time $t_{d(off)}$ $V_{DD} = 400 \text{ V}, \text{ Ip} = 10 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_{g} = 9.1 \Omega$ -1836Fall Time t_{f} r_{f} -1428Gate Input Resistance R_{g} $f = 1 \text{ MHz}$, open drain-1.8- Ω Drain-Source Body Diode CharacteristicsMOSFET symbol showing the integral reverse $p - n$ junction diode-10APulsed Diode Forward Current I_{SM} $MOSFET symbol$ showing the integral reverse $p - n$ junction diode10ADiode Forward Voltage V_{SD} $T_J = 25 \text{ °C}, I_S = 5 \text{ A}, V_{GS} = 0 \text{ V}$ 1.2VReverse Recovery Time t_{rr} Reverse Recovery Charge Q_{rr} $T_J = 25 \text{ °C}, I_F = I_S = 5 \text{ A}, V_{GS} = 25 \text{ V}$ -1.6- μ_{C}	Rise Time		N .	400 \/ 1	- 10 4	-	18	36	
Fall Timetf-1428Gate Input ResistanceRgf = 1 MHz, open drain-1.8- Ω Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode-10-10Pulsed Diode Forward CurrentIsMOSFET symbol showing the integral reverse p - n junction diode10-Diode Forward VoltageV_SDTJ = 25 °C, IS = 5 A, V_GS = 0 V1.2VReverse Recovery TimetrrTJ = 25 °C, IF = IS = 5 A, dl/dt = 100 A/µS, VB = 25 V-1.6-µO	Turn-Off Delay Time				-	18	36	ns	
Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain-1.8- Ω Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode10APulsed Diode Forward Current I_{SM} I_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 5 \text{ A}$, $V_{GS} = 0 \text{ V}$ 40ADiode Forward Voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 5 \text{ A}$, $V_{GS} = 0 \text{ V}$ 1.2VReverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 5 \text{ A}$, dl/dt = 100 A/µs, $V_R = 25 \text{ V}$ -1.6- μ	Fall Time	- (-)			-	14	28		
Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse $p - n$ junction diode10APulsed Diode Forward CurrentIsMIsMTJ = 25 °C, IS = 5 A, VGS = 0 V40Diode Forward VoltageVSDTJ = 25 °C, IS = 5 A, VGS = 0 V1.2VReverse Recovery TimetrrTJ = 25 °C, IF = IS = 5 A, dl/dt = 100 A/µS, VB = 25 V1.6-µC	Gate Input Resistance		f = 1 MHz. open drain		-	1.8	-	Ω	
Continuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode-10APulsed Diode Forward CurrentIsmIsm $r_{J} = 25 \ ^{\circ}C$, Is = 5 A, VGS = 0 V40ADiode Forward VoltageVspT_J = 25 \ ^{\circ}C, Is = 5 A, VGS = 0 V1.2VReverse Recovery TimetrrT_J = 25 \ ^{\circ}C, Is = 5 A, dl/dt = 100 A/µs, VB = 25 V1.6-µc	•	÷							
Pulsed Diode Forward CurrentIsmIntegra reverse p - n junction diode40Diode Forward Voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 5 A$, $V_{GS} = 0 V$ 1.2VReverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 5 A$, dl/dt = 100 A/µs, $V_B = 25 V$ 1.6- μc	•		showing the integral reverse		-	-	10		
Reverse Recovery Time t_{rr} $T_J = 25 \degree C, I_F = I_S = 5 \ A,$ -230-nsReverse Recovery Charge Q_{rr} Induction Control Con	Pulsed Diode Forward Current	I _{SM}			-	-	40	A	
Reverse Recovery Time t_{rr} $T_J = 25 \degree C, I_F = I_S = 5 \ A,$ -230-nsReverse Recovery Charge Q_{rr} Induction Control Con	Diode Forward Voltage	V _{SD}	$T_{1} = 25 \text{ °C}, I_{S} = 5 \text{ A}, V_{GS} = 0 \text{ V}$		-	-	1.2	V	
Reverse Recovery Charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 5 \ ^{\circ}A$, $dI/dt = 100 \ ^{\circ}A/\mu s$, $V_R = 25 \ ^{\circ}V$ $ 1.6 \ ^{\circ}-\mu C$	· · · · · · · · · · · · · · · · · · ·					-	230	-	ns
di/dt = 100 A/µs, v _R = 25 v			T _J = 25 °C, $I_F = I_S = 5 A$, dI/dt = 100 A/µs, $V_R = 25 V$		-		-	μC	
	, ,				-		-	A	

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS} .

b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS} .

Document Number: 91519

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

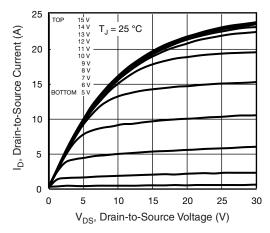


Fig. 1 - Typical Output Characteristics

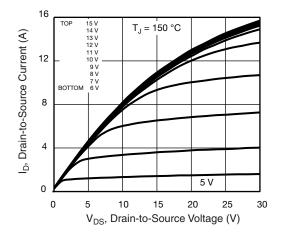


Fig. 2 - Typical Output Characteristics

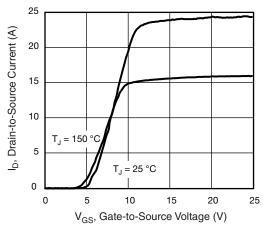


Fig. 3 - Typical Transfer Characteristics

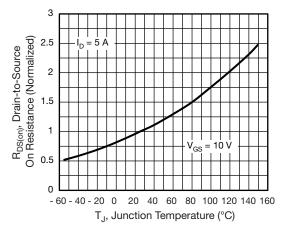


Fig. 4 - Normalized On-Resistance vs. Temperature

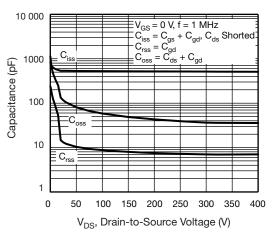


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

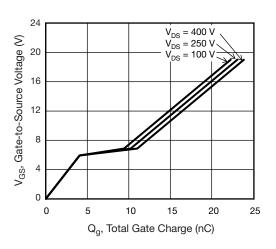


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

IRF740B

Vishay Siliconix

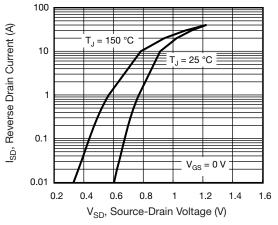
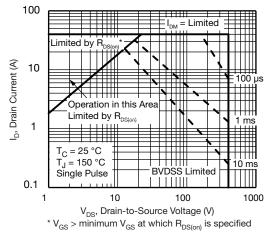



Fig. 7 - Typical Source-Drain Diode Forward Voltage

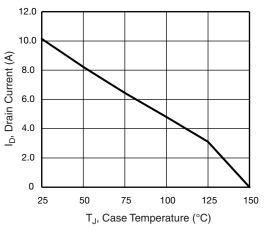
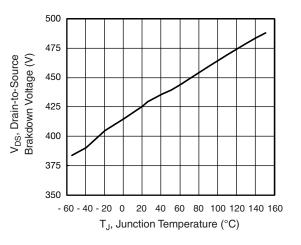
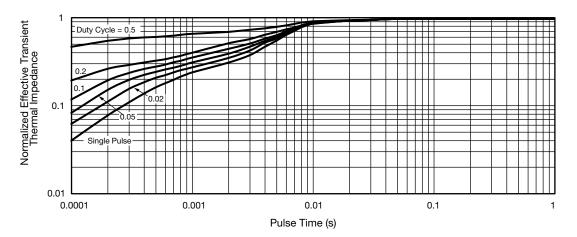
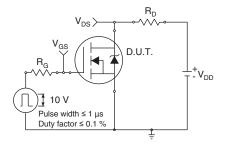


Fig. 9 - Maximum Drain Current vs. Case Temperature


Fig. 10 - Temperature vs. Drain-to-Source Voltage

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Fig. 12 - Switching Time Test Circuit

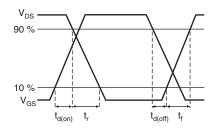


Fig. 13 - Switching Time Waveforms

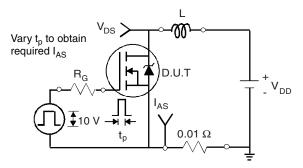


Fig. 14 - Unclamped Inductive Test Circuit

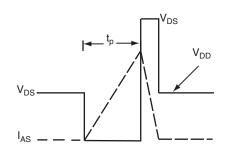


Fig. 15 - Unclamped Inductive Waveforms

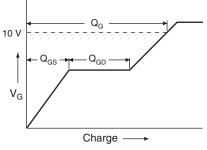


Fig. 16 - Basic Gate Charge Waveform

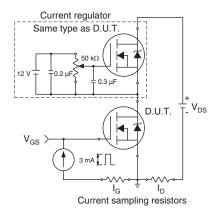
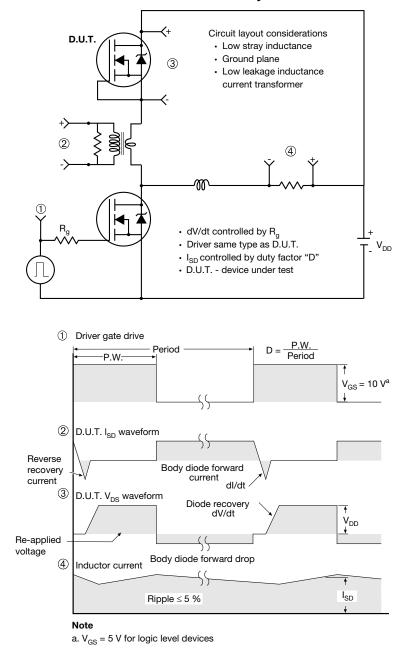
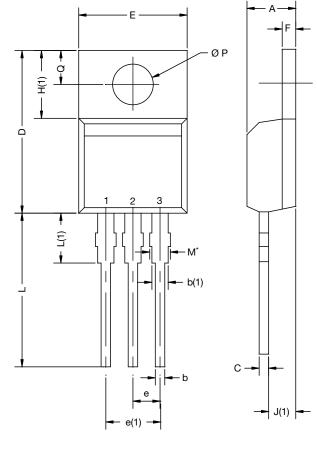


Fig. 17 - Gate Charge Test Circuit

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Peak Diode Recovery dV/dt Test Circuit

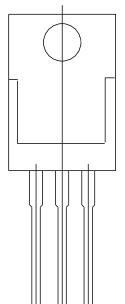



Fig. 18 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91519.

vishay.com

TO-220-1



	MILLIMETERS		INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.14	4.70	0.163	0.185	
b	0.69	1.02	0.027	0.040	
b(1)	1.14	1.73	0.045	0.068	
С	0.36	0.61	0.014	0.024	
D	14.33	15.85	0.564	0.624	
Е	9.96	10.52	0.392	0.414	
е	2.41	2.67	0.095	0.105	
e(1)	4.88	5.28	0.192	0.208	
F	0.43	1.40	0.017	0.055	
H(1)	6.10	6.48	0.240	0.255	
J(1)	2.41	2.92	0.095	0.115	
L	13.36	14.40	0.526	0.567	
L(1)	3.33	4.04	0.131	0.159	
ØΡ	3.53	3.94	0.139	0.155	
Q	2.59	3.00	0.102	0.118	
ECN: X15- DWG: 603 ⁻	0003-Rev. A, I	19-Jan-15			

Notes

- M^{\star} = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

- Outline conforms to $\mathsf{JEDEC}^{\circledast}$ outline TO-220AB with exception of dimension F

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.